
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP023714
TITLE: Securing Embedded Software using Software Dynamic Translation

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Proceedings of the ARO Planning Workshop on Embedded
Systems and Network Security Held in Raleigh, North Carolina on
February 22-23, 2007

To order the complete compilation report, use: ADA485570

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP023711 thru ADP023727

UNCLASSIFIED



Securing Embedded Software
using Software Dynamic Translation

Position Paper for ARO Planning Workshop on
Embedded Systems and Network Security

February 22-23, 2007

Jack W. Davidson and Jason D. Hiser, University of Virginia, [jwd, jdh8d@virginia.edu

1. Introduction
Embedded computer systems have become key building blocks of our nation's vital infrastructure. Critical systems
controlled by embedded computer systems include communications systems, transportation and navigation systems,
financial systems, medical systems, power distribution systems, and critical defense systems. Failure or compromise of
such systems can have significant consequences including disruption of critical services, financial loss, and loss of life.
Because critically functionality in embedded systems is increasingly implemented via software, three important
research challenges for securing these systems is to provide protection from malicious observation, making them
tamper resistant, and making them more resilient to unintentional and intentional memory errors in unsafe code that
could be used to compromise an embedded system.

Unfortunately, securing embedded systems present several unique challenges not found in typical desktop or
enterprise systems. Because of cost and power considerations, the execution environment for embedded software is
often resource constrained-CPUs have limited processing power, there is often no memory management unit, and
memory space is limited. Furthermore, embedded systems are frequently deployed in the field and must operate in
physically insecure environments.

In this position paper, we discuss software dynamic translation and its potential for protecting software from
malicious observation and tampering. While software dynamic translation can also be used to provide protection
from unintentional and intentional memory errors that can be used to compromise an embedded system, even a brief
discussion of the needed research and challenges in that area is beyond the scope of this paper.

2. Malicious Observation and Tampering
A trend in embedded systems is to provide functionality, which in the past was usually provided by hardware, via soft-
ware. There are many advantages to using software instead of hardware to provide required functionality-reduced
cost, increased flexibility, the ability to provide enhancements and patches, etc. However, moving functionality from
hardware to software provides malicious parties easier access to valuable intellectualproperty (IP). In the context of this
position paper, IP means information that an adversary could use for some malicious purpose (e.g., maliciously mod-
ifying a system, discovering a weakness that could be used to disable the system or render it ineffective, etc.) Malicious
observation is the process of obtaining valuable IP. Of course, malicious observation could also be used to obtain valu-
able IP for commercial or financial advantage. Closely related to malicious observation is malicious tampering. Mali-
cious tampering is the modification of software to change its intended behavior to achieve some malicious goal (e.g.,
cause damage, render the system ineffective, subvert some safeguards or licensing checks, etc.). Obviously, to intelli-
gently tamper with a system, an attacker must have some knowledge about the operation of the system. Consequently
malicious observation and tampering are closely related.

Because embedded systems are often deployed in hostile or insecure environments, one must assume that an
attacker can gain physical access to the system. Consequently, an attacker can employ a variety of means to mali-
ciously observe the operation of the software including the use of a virtual execution environment. The adversary can
inspect, modify, or forge any information in the system. An adversary can run the program repeatedly and aggregate
information from multiple runs of the program. In this extremely harsh environment, the adversary "holds all the
cards" and with adequate time and resources, can gain a detailed understanding of the operation of the system.

Securing Embedded Software using Software Dynamic Translation 1



3. Fundamental Limitations of Current Approaches
Current approaches to thwarting malicious observation have focused on making software hard to analyze statically.
Addressing dynamic approaches to malicious observation has received little attention. While hardware approaches to
preventing malicious observation and tampering can be effective in some contexts, hardware approaches may not be
feasible within the cost- and resource-constraints imposed on embedded systems. In a similar vein, the few software
approaches that have been proposed can require considerable computational resources and therefore are not applicable
to embedded systems. Finally, much previous work has assumed an unrealistic threat model where an attacker does
not have unfettered access to the system.

4. Software Dynamic Translation
A promising approach for addressing the very difficult problem of securing embedded software from malicious obser-
vation and tampering is to use software dynamic translation (SDT). SDT is a technology that enables software mal-
leability and adaptivity at the binary instruction level by providing facilities for monitoring and dynamically
modifying a program as it executes. SDT can affect an executing program by injecting new machine code, modifying
existing code, or by monitoring and changing the control flow of the executing program. SDT has been successfully
used in a variety of areas including binary translation, fast machine simulation, dynamic optimization, and to protect
software from attacks that inject malicious code or attempt to change the normal execution flow of the program.

Using SDT, we envision a three-pronged approach to address this difficult challenge. First, SDT coupled
with strong encryption technology can be used to make it difficult and costly for an adversary to statically and dynam-
ically analyze embedded software. However, with physical access to the system and with adequate resources, a sophis-
ticated and determined attacker could eventually obtain a detailed understanding of the software's operation.
Therefore our second approach is to use SDT to make it difficult for an attacker to examine or modify a running sys-
tem (including the one that an attacker might have obtained for malicious observation). Third, SDT is used to create
diverse versions of the software to make it difficult to aggregate information across different executions of the system.
Dynamic diversity also ensures that knowledge gained by capturing and observing one instance of a system is not
applicable to any other deployed instance. Thus, even if an attacker can determine what modifications to make to
achieve their goal for one instance of the system (i.e., the system to which they have physical access), this knowledge
is not useful for attacking other instances of that system.

5. Milestones
For SDT to be applicable to embedded systems, it must be demonstrated that SDT can be applied to embedded soft-
ware running on typical embedded processors. Preliminary results for the ARM processor using some widely used
embedded benchmarks indicate that SDT can be efficiently accomplished on an embedded system. Research adapt-
ing SDT to other architectures and other types of systems (e.g., hard real-time systems, reactive systems, etc.) needs
to be carried out. Of paramount importance is the ability to perform SDT on resource-constrained systems without
excessive overhead.

A difficult problem is the assessment of the effectiveness of techniques to provide protection against mali-
cious observation and tampering. Of particular concern is that there are no objective metrics or models for assessing
the effectiveness of techniques to protect software against malicious observation when an intelligent human adversary
is guiding the effort (which will almost always be the case). Development of metrics and models for assessing the
effectiveness of techniques used to protect embedded software against malicious observation and tampering is critical.

While hardware solutions to the malicious observation and tampering problem have been proposed, they
can greatly increase the cost of a system. For systems where deployment means the delivery of thousands of devices,
the cost of a comprehensive hardware solution may not be feasible. However, modest hardware additions designed to
support SDT-based solutions to malicious observation and tampering may be cost effective and provide a higher level
of protection than simple hardware- or SDT-based protection mechanisms alone.

Securing Embedded Software using Software Dynamic Translation 2



SeuigEbdddSfwr

4usin

Sofwar Dynamic Tanslatio

lac W, Daido an -o i

Unvrst of Virginia~

Proble

" Emedde sytemskeybuilingblocs o naton'



Threat model
" Adversary has physical access to

system
" Adversary controls execution

environment
- Execute directly and observe
- Simulate and observe
- Provide false inputs
- Run repeatedly
- Use sophisticated dynamic analysis
tools

" White-box attack where the
adversary "holds all the cards"

- Example, FID protection recently
cracked ..-MONK,

(hftp://www.theregister.co.uk/2007/02/1
4/aacs-hack/)

Our Approach: Software Dynamic Translation

" Any software that
intercepts, controls, or
modifies a program as it
runs

" Subsumes-
-Dynamic optimization
compilation
-Dynamic binary translation
-Dynamic instrumentation (e.g.,
profiling)
-Host virtualization
-Debugging



Using SDT for am~Obfscato adAtitmprn

- Codeisencypted on ads

- Mus runSDT yste to ateraliz cod

Yervde yamcofscto of code

- atrl bfsatono code by S sste

- Dyamicllyappl obuscaion



Research challenges for anti-tampering in
embedded systems

" Develop metrics for evaluating degree of obfuscation
and resistance to tampering

" Managing overhead (both space and time) in
constrained-resource systems

" Satisfying real-time requirements
" Investigate melding low-cost hardware approaches

(suitable for widely deployed embedded systems)
and SDT approach

" Many others ...

Limiting leakage of information

2 409/ - No ff hing

10s J hing

ls lushing

0./ 0. 1 s flushing

< a -F 10%
7 -- ----

0%

2 4 6 8 10 12 14 16 18 20 22

Runfirne (seconds)



Runtime Overhead

No ff hing
2

10s J hing

1.5 ls lushing

1 -'M 0. 1 s flushing
E

z
0 5

4,


